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DRAG MINIMIZATION FOR WINGS AND BODIES IN SUPERSONIC FLOW !

By Max. A. Heasrer and FranknyN B. FuLner

SUMMARY

The minimization of inviscid fluid drag is studied for aero-
dynamic shapes satisfying the conditions of linearized theory,
and subject to tmposed constrainis on lift, pitching moment,
base area, or volume. The problem is transformed to one of
determining two-dimensional potential flows satisfying either,
Laplace’s or Poisson’s equations with boundary values fized by
the imposed conditions. A general method for determining
integral relations between perturbation velocity components 18
developed. This analysis is not restricted in application to
oplimum cases; it may be used for any supersonic wing problem.

For given base area, general formulas are found that cover as
special cases quasi-cylindrical bodies of revolution, wings
Laving plan forms with fore-and-aft symmetry, slender bodies,
and certain classes of yawed wings. The drag can in fact be
determined from a unidimensional flow analysis in a duct of
known shape. For given volume, minimum wave drag of a
ducted body of revolution of arbitrary radius is expressed in
closed analytic form. The elliptic wing is treated, and a pos-
sible source of difficulty connected with unreal shapes in given
volume problems is found. In the case of ducted bodies of revo-
lution, the singularity distribution corresponding to the mini-
mum drag is determined.

Particularly simple resulis are found for a family of wings
with curved leading edges with lift specified and center of pres-
sure fixed at the 60-percent-chord position. General relations
for integrated loading along oblique lines are derived for this
family of wings.

INTRODUCTION

To seek conditions under which the wave and vortex drag
of a given wing or body is minimized is to seek conditions
for economical supersonic flight. It is also & common ex-
perience, in the study of such problems, to find that a gratu-
itous economy appears to affect the analysis itself. Almost
invariably, simplicity characterizes the final forms of the
results in comparison with predictions carried out for wings
and bodies chosen with less discrimination. In the present
paper, the minimization of wave and vortex drag for various
aerodynamic shapes is studied. Some side conditions, such
as given lift, given volume, etc., must be specified in order
to set a meaningful variational problem for the shape at
hand. The side condition of given base area is noteworthy
as leading to results with the simplicity mentioned above,
for, as will be shown, the general expression for minimum
drag assumes the most elementary form possible while at
the same time retaining the relevant parameters and being
dimensionally correct.

The starting point of the present work was the expression
for drag given by G. N. Ward (ref. 1) in his study of thin
lifting bodies, that is, wings and bodies for which linearized
supersonic flow theory applies. Work of this type was first
reported by Nicolsky in reference 2, and detailed results
(refs. 3 and 4) have since become available. The body
shape is assumed to be enclosed by a characteristic surface
generated as the envelope of both the downstream-facing
Mach cones, with vertices on the forward edge of the body,
and the upstream-facing Mach cones, with vertices on the
trailing edge of the body. The drag (wave plus vortex)
is then given by a surface integral of the induced velocities
over the downstream portion of the Mach envelope, and
other forces, moments, and geometrical properties are
similarly determined. This particular control surface has
analytical advantages similar to those exploited by R. T.
Jones (refs. 5 and 6) in the use of combined flow fields.
Jones adopts a perturbation potential equal to the sum of
the potentials in forward .and reverse flow. He then shows,
for example, that for a plan form of given base area the
necessary condition for minimum wave drag is that the
pressure in the combined flow field be a constant over the
plan form. It follows that locally the combined flow
potential is & two-dimensional harmonic function. The
direct use of combined flow fields has been further extended
and applied by Graham (ref. 7), and is used in combination
with the control surface mentioned above by Germain
(refs. 8 and 9). Along the Mach envelope used by Ward
the perturbation potential in forward flow is equal to its
value in the combined flow field. Drag minimization then
determines conditions on the control surface, and the
potential on this surface differs from a two-dimensional
harmonie function by a known amount. The conventional
perturbation potential is retained, but the determination
of the body shape is still not direct. Mathematically, one
needs to invert an integral equation, and questions as to
existence and uniqueness of the solution arise. In the case
of ducted bodies of revolution of given base area or volume,
the integral equation will be solved explicity in a later
section.

When the expressions for the forces and moments and
geometrical quantities in terms of integrals over the same
control surface are known, it is possible to combine the drag
with one or more of the others, as constraints, and set up
an optimization problem. Variational methods then yield
the result that, in general, the potential in the control surface
must satisfy a Poisson equation in the lateral coordinates.
Ingpection leads to a number of cases in which solution by

! Bupersedes NACA Technical Note 3289 by Max. A. Heaslet, 1857, and NACA Technical Note 4227 by Max. A. Heaslot and Franklyn B. Fuller, 1958,
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analytical methods is possible, and recourse to numerical
techniques is not required, though it is of course available
for more difficult problems.

Finally, a method for generating integral relations among
perturbation velocity components is outlined. By these, it
is possible to gain knowledge of aerodynamic loading on the
wing integrated along oblique lines. So long as the obliquity
of the lines is such that the component of stream velocity
normal to them is supersonic, the variation of the integrated
loading in the stream direction is obtainable. The so-called
chord loading is a special case of these results. The span
loading is a by-product of the solution of the variational
problem, for this involves determination of the perturbation
potential in the rear Mach surface springing from the
trailing edge. Then, when the perturbation potential on
the trailing edge is known, the span loading is found directly.

IMPORTANT SYMBOLS

A base area of wing or body

(0 drag coefficient

Cy lift coefficient

G, Ca curves bounding a region in an :u——const plane (see
fig. 2)

D drag of wing or body in a supersonic flow

(y,2) function defining (by 2=f(y,2)) a characteristic sur-
face springing from a trailing edge

l streamwise extent of wing or body

L lift

L ;“’0) integral of local loading (—l) along obhque line (see
eq. (66))

m tangent of angle of sweep or yaw

M, Mach number in the free stream

M pitching moment, positive for & nose-up moment,
taken about the line 2=z, y=2=0

n inner normel to a plane curve

N inner normal to a surface

P pressure

Ap load coefficient (upper-surface pressure minus

9o lower-surface pressure divided by free-stream
dynamic pressure)

q local velocity

' free-stream dynamic pressure, % PaUs?

r radial coordinate in axially-symmetric problems

8 arc length

S region in an z=const. plane (see fig. 2)

u,0,Ww perturbation velocity components in z,,z direc-
tions )

U. speed of free stream along z axis

1% volume of a wing or body

2,%,2 Cartesian coordinates

ﬁz ﬂ{m2_

Iy space curve (defined in fig. 1)

Mo, Liagrange multipliers (see eq. (11))

v conormal (see eq. (18a))

Pe density in the free stream

Zo,21, surfaces
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@ perturbation velocity potential
X perturbation potential on surface z=2f(y,2); x=
lf(y,2),9,7]
. ba
4
v two-dimensional Laplace operator, = b z:’ T
ANALYSIS

The following analysis is divided into several sections.
First, the geometrical quantities, base area and volume, are
expressed in terms of integrals over a given control surface.
Then relations for the lift, drag, and pltchmg moment, are
given. These results can be combined in various ways to
set up variational problems where drag is minimized while
one or more of the remaining quantities is held fixed.
Finally, a method by whieh integral relations among tho
perturbation components.can be derived is outlined.

In all this work, it is assumed that supersonic small-
disturbance theory applies. There is then a perturbation
potential function ¢(z,y,2) satisfying the equation

Bgfpxz_ Pyy— =0 (1)

where
=M_.2—

The velocity components in thé coordinate directions are
Uo+tenop0.. It will be assumed that the given body can
be represented by a planar or cylindrical reference surface,
the latter having directrices parallel to 0z, the free-stream
direction. Boundary conditions are to be satisfied on the
reference surface. In order to avoid difficulties concerning
g&ps or holes in the body surface, it will be assumed that
unique leading and trailing edges exist, and that the thick-
ness distribution function does not vanish between these
extremities.
RELATIONS FOR BASE AREA AND YOLUME

/

Consider a cylindrical reference surface as mentioned
above, and draw in the enclosing characteristic surfaces as
shown in figure 1. The reference surface itself is denoted
Zs. The envelope of Mach cones springing from the lead-
ing edge is 2, and the envelope of Mach cones from the
trailing edge is Z.. These surfaces, Z; and Z;, intersect
along a space curve I';, as shown in figure 1. The relations

¥

Fiauore 1.—Reference surface and oharacteristic enveloping surfaoés.
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for base area and volume of the body represented by the
reference surface =, will be derived by applying Green’s
theorem to the volume bounded by the surfaces =, I,
and 2,

The following form of Green’s theorem will be used:

f f FOO)-(FV) dr——f f FV—dz f f FIV-(EVD)] dr

where

T volume bounded by =42+,

F, U, V arbitrary scalar functions of position
N interior normal to a surface

v vector differential operator, grad
Now set

Fep=p., (1—M‘,‘,2 g-) to first order
U=o=U _r+o(z,y,2)=total potential
V=z*

The integral relation becomes

fﬂ pUF ek ‘d’—‘ﬂpﬂ«“ SN9E— f f 21V-(oV8)) dr

and the last integral on the right vanishes by virtue of the
continuity equation for steady flow. The remaining quan-
tities are

f ([0 o0 ar=—[[[o2* § ot 22

Zet+Zi+22

(2a)

Take first the case k=0. The left side of equation (2a)

vanishes and one has
92 i+ f f o dz=0

Jfesweffoay

JThe integral over Z, is, to first order,

20 .
fp-é—NdE=me¢:ff dyd:r——p,,,Uff dz dy
2y I

where Z=Z(z,y) is the equation of the surface of the wing or
body. The integral therefore gives the increment in frontal
ares of the wing or body between the leading and trailing
edges, symbolized here as 4;

dZ
A—ff >z dxdy
b2

Next, consider the integrals over Z; and =Z;. Let the surface
Z,; be defined by the equation .
z=1(y,2) 3

The normal N to =; has direction cosines

MMM,

(2b)

NyiNgNy=—
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and the normal to Z; has clearly N;=
(2b) becomes (since ¢=0 on =)

1/M.. Thus equation

o U A=p. f (—Broe—Tyor—Tfepdy dz

An essential simplification of this formula results if one
introduces the function x(y,z) where

X= SD[f(?/, 2) Y z]

and z=f(y,z) is the equation of the rear characteristic
surface Z,. Then, since

xvy=ofst ey, Xe=0frte:

=p2, the relation for base area becomes

and f2 417

) A=—g- f f (i Hfx)dyde (40)
8

In equation (4a), S is the projection, shown in figure 2, of
the surface Z; on an z=const. plane. As shown also, () is

‘)

Ficure 2.—Projection of rear characteristic surface 2, in an r= const.
plane.

its outer boundary, or the projection of the space curve I
shown in figure 1, and (; is the projection of the reference
surface of the wing or body. By application of Green’s
theorem, and the knowledge that x=0 on Ty, hence on (,
equation (4a) can be rewritten in the forms

1 1 (.0
A=I—.J-:£j xvifdy !lz+mi p 4 b—f ds

=in£ff vixdyd z+[%.;!;'.f %}I ds (4c)

(4b)
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where )
n  interior normal to curve in z=const. plane
8 arc length in z=const. plane

The formula relating the volume of a wing or body to
integrals of the function x follows by taking k=1 in equation
(22); one has -

Ve f IS s s f f X280y de—g f x L

)
where ‘
14 incremental volume of wing or body
R{f,8) deviation of body from control surface at trailing

edge
Equation (5) gives the volume of bodies that are either open
or closed at the base. The first integral on the right of
equation (5) may vanish for several reasons aside from the
obvious case of zero base area; in these cases the volume is
expressed as

= f f X@E+ )y do—g— f
=_2—Z]7T, Sf v dy dz—-% L f X dy da—
T Jone o s (6b)

It is worth noting that since neither base area nor volume
can be influenced by position of the center of coordinates, it
is possible sometimes to effect certain economies in algebraic
manipulation by a judicious choice of origin.

FORCE AND MOMENT RELATIONS

Expressions for lift and drag forces are obtained by appli-
cation of the law of conservation of momentum in the
volume bounded by 2y, Z;, and =, (see fig. 1). The vector
force relation is

F—-—ffPNdz—ﬂpg(g Nydz
ZitZ
where
_15’ vector force on body
local velocity vector

unit inner normal to surface

S L R

local pressure
p  local density

The force can be resolved into lift and drag components, and
the results consistent with linearized theory are (as given in
ref. 1)

ds (62) \
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IL=—0p.U. || x.dydz (7a)
Iy
R =p. U, f X cos (z,n) ds (7b)
A ]
@ @ b
D=—t= ! f xvxdyde—be [ x X i (8)
;=P_m 2 ]
5 fsf(X. +x,9)dy dz (8b)

The pitching moment is next found. The vector moment
relation is

- 2 2 o - -
si=— [ oeMeaxdiz— [[pEwxihaz
I 42, I,

where 7-),., is the vector distance between the moment center
and an integration element on the control surface. If only
the pitching moment is considered, with nose-up pitching
moment taken as positive, and moment center at (¥m, 0, 0),

" the linearized result is

M=—p.0. f [xvenayde—
paU J I:b(zf) ¥ COS (2 n)] ds ()]

If lift Z=0 or x,=0 so that pitching moment is calculated
about the origin, one finds

M——p T, ! f xv¥ef)dy de—p U f L a_g;g s (100)

—— f f of vixdy de—p U f

VARIATIONAL PROBLEMS

= ds (10b)

The problem of minimizing drag under the constraint of
given bage ares, or volume, or lift, or pitching moment can be
set up with the aid of equations (4), (6), (7), (8), and (10).
It is only necessary to apply standard variational procedure
to any of the expressions

L=D—-\A
Li=D+uV
Ii;=D—oL
I=D—M

(11)

where A, u, o, 7 are Lagrange multipliers. In the language of
combined flow fields (refs. 5 and 6) the Lagrange multipliers
yielding minimum drag can be identified with constant values
of the longitudinal and vertical velocity components or their
gradients. In this way, for example, M and p are, respectively,
constant pressure and pressure gradient in the combined
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field. Less general interpretations may possibly be given the
Lagrange multipliers in specific classes of problems. One
such interpretation is given in the discussion following
equation (40) of this report.

It is possible to combine the variational problems with
each other. TFor example, if it be required to find minimum
drag with given base area and lift, the quantity to be mini-
mized would be D—AA—ocL and so forth. The results found
by applying the variational procedure to equations (11) will
be given next. Each is a two-dimensional flow problem in the
Iateral variables ¥,z2.

Given base area:

v (x+ p(}]m f>=0 in §
an Xt f)— on G, (123)
on 01
N .
=54 (12b)
Given volume (zero base area):
v [xbgsler (4kD [ in S
13
R P 2] o Y-
X=0 on 01
D=—‘2—‘ 14 (18b)

where k is a constant to be determined by application of the
zero base area condition.

Given lift:
vx=0 in S
-b% x+U,02)=0 on (14a)
x=0 on G
D=§- L (14b)
Given pilching momend (zero lift):
v (x+U,72f)=0 inS |
(x+U Tzf)= k — on Cs (15a)
x=0 on 01
D=—NM (15b)

where % is a constant to be determined by the condition of
zero lift.

In each of the problems listed in equations (12) through
(15), the possibility of obtaining a solution depends largely
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upon the boundary curve (). Several cases where exact
solutions are obtainable will be treated in later sections.
However, recourse to approximate methods is usually indi-
cated. One approximation in which the wing is distorted
glightly in order to obtain a boundary curve C; for which the
two-dimensional problem is solvable is discussed in refer-
ence 10. Germain (ref. 8) has used development in series.

INTEGRAL RELATIONS BETWEEN PERTURBATION
VELOCGITY COMPONENTS

Some useful and interesting relations between integrals of
the potential function ¢ taken across the reference surface
%, to integrals of x in =; (see fig. 1) will now be derived.
These results are not specialized to minimum-drag solutions,
but apply to any case. Consider a planar, supersonic-
edged wing, and choose & line in the wing plane (z=0) that
cuts the z axis in (z,0,0) and which makes an angle p, with

the ¥ axis;
z—y tan p=1u (16)
Further, let the angle p, be such that tan 1<, making the
normsal component of free-stream velocity always supersonic.
This line will always lie in the supersonic “‘zone of silence’
corresponding to the point (zp, 0, 0). Under this condition,
a plane, Z; tangent to the Mach cone springing from
(zo, 0, 0) can be made to pass through the line given by
equation (16). This plane is (in a notation introduced by

Hayes, ref. 11)
z—f cos 8y B sin fz=1x, 17)

where 8 cos 8=tan p,. The resulting situation is shown in
figure 3 for the case of a sonic-edged wing.

=z

B
Frgure 3.—Characteristic plane cutting wing and enveloping surfaces.

If Green’s theorem for equation (1) is applied to an
arbitrary region enclosed by & continuous surface Z, the
fundamental integral relation

H'A%fdz=0'
z

(182)
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results. The derivative d¢fOr is the gradient of potential
along the conormal » with direction cosines »,, »,, »s that are
related to the direction cosines n,, na, 75 of the inner normal
to the surface = by the equations

—Bni=Aw;, ng=Av;, Nz=Ar;

Consider now the region bounded by =,, =,, and =5, and
in which 2>0 (in fig. 3, =, =i, =, are defined as in fig. 1;
Z, is the plane of equation (17)). On =, and 3, it is easily
found that A=g, and on 3y, A=1 For this region, equation
(18a) becomes

L[] [ amo

Since the conormal » lies in the surface Z;, (and also in =),
the integral over =, will vanish because ¢ is zero thereon.
Further, on 2, 9/ov=0/0z and dZ=dx dy. Equation (18b)

now becomes
1 o)
; f f oz dy+ f % 4z=0
Z P

The integral over =; in equation (19a) will be greatly
simplified if one takes d%=d» ds, where ds is an element of
length normael to dv, and lying in the plane Z. It can be
shown that under these conditions, -ds always lies in an
r=const. plane. Equation (19a) now becomes

i [Josetr—oa

where the line CD is the intersection of the plane given by
equation (17) with the wing plan form.

Next, one can repeat this analysis for the region ahead
of Z3, within 2; and =,, and below the wing plane. This
time, the surface Z; will form a portion of the bounding
surface, and a line integral across =, will result. One can then
combme the relations obtained for the two regions and

(18b)

(19a)

(19b)

relate an integral of potential across the wing surface to one

across the surface ;. A detailed application will be made
in a later section.
APPLICATIONS

The analysis discussed in the previous sections will now
be applied to some particular problems. These will include
a number of cases in which the configuration of the wing or
body permits simple analytic solution of one or more of the
variational problems listed as equations (12) through (15).
Quasi-cylindrical bodies of revolution were mentioned in the
Introduction as constituting a.class of shapes for which a
full solution to the minimum-drag problem is available.
The simulating axial source distribution, from which surface
shape can be caleulated, is derived herein, leading, inci-
dentally, to an interesting identity involving integrals of
elliptic integrals. Finally, the results pertaining to integrals
of wing loading along oblique lines across the wing are
applied to a particular family of minimum-drag wings.
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WINGS AND BODIES WITH GIVEN BASE AREA

By combining equations (8a) and (12a) and using Green’s
formula, one gets for the drag of an optimum wing or body
with the given base area

N A ox, X _of
—Zq:ff Grsdyde+ gy || (e o) ds
B2 A 0
T 44, ST2U fcl bn U on ds (20)

where ¢. is the free-stream dynamic pressure, (1/2)p., U.
Further evaluation of the drag by equation (20) requires
explicit knowledge of the funetion x, obtained by solving the
potential problem of equations (122). A large and particu-
larly interesting class of wings and bodies for which the
solution is immediate is characterized by the condition that
f=const. on (). This implies that the outer rim I, the
intersection of the characteristic envelopes in figure 1, lies
in & plane normal to the free-stream direction. For example,
all wings with plan forms having fore-and-aft symmetry
satisfy this requirement as do also all pointed configurations
with subsonic edges so long as the nose and tail vertices
determine a line parallel to the free-stream direction.
In such cases, the solution of equations (12a) is

x=0

and equation (20) gives for the drag

2
D_4_q,, N

(21)
By combining this awvith equation (12b) and eliminating A,
one gots

D 42

9
gm ﬁg S (2 ‘)

The simplicity of equation (22) is remarkable, and ex-
amples of its diverse applicability are given below. Before
proceeding to these applications however, it should be noted
that a similar result applies to all planar wings whose en-
veloping surfaces 2, and =, intersect in any plane parallel
to the z axis. In this case,

z=f=m(y-bo)

on the curve C;, where m(<g) is the slope of the plane of
T relative to the stream direction. The solution of equa-
tions (12a) once more gives x=0, and then, for the drag

from equation (20),
ﬁz)\as J‘ Pri B’)\’S Am QS
4qw 4qu,

)
4 Qm (“ 3)

Again eliminating A with the aid of equation (12b), one has

D Az

q0= (ﬁ?_ m!) S (24)
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Ducted body of revolution with prescribed end diame-
ters.—This problem has been considered by Parker in refer-
ence 12, and by Nicolsky (see ref. 2). As shown in figure 4,

F1aure 4.—Optimum body with preseribed end radii.

a shape with minimum external wave drag is constructed so
as to have an initial radius R; and a final radius RB,. In order
that the previous linear theory should apply, the restriction
is made that the ratio 8|B,— R,|/l should be a small quantity.
If the origin of axes is in the front face of the body, the
fore-and-aft Mach surfaces are

z=B(r—R,), z—Il=—B@r—R)

and the curve C; is a circle of radius R, where
Ry=(l+BR\+BR,)[28
From equation (22) drag is

D 4(RP—RAH%
¢o (+BE+BR,)*—46°R’

Equation (25a) is of particular interest since it represents a
whole spectrum of results that extends from slender-body
theory, for SR;/l and AR,/ small, to two-dimensional theory,
for R/l and BR.[l large. The slender-body result leads
directly to the familiar Kérmdn ogive formula (ref. 13),

Dy_ 447 ,

go w2

(258)

(25b)

The two-dimensional result applies‘ to the upper half of an
optimum wing (a flat plate), and is found to be

D 2a3
0D—21ngm__ﬁ—

where R is mean radius and e=(R,—Ry)/L.

Elliptic plan form with afterbody.—The problem of given
base area along the rear edge of an elliptic wing was consid-
ered first by R. T. Jones (ref. 6). The figure is a semi-infinite
body with a cylindrical shape drawn downstream of the

(25¢)
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rear -edge of an ellipse, see figure 5. The equation of the
plan form outline is assumed to be

AT

a1

Fieure 5.—Elliptic wing of given base area.

and the enveloping Mach surfaces are determined completely
by the fore-and-aft Mach cones with vertices along the

supersonic-edged portion of the plan form <Whe1'e ﬁ%> I>)
that is, the abscissas of the vertices lie within the region
=] <a*/(a*-+ 267
The curve () has the equation
__ 4+ 2
[(a*+026%)%/B1* * (a/B)?
and is an ellipse with foci at (+£5,0). Equation (22) then
yields
- D A?
¢~ ma(a+b3p)*

If drag coefficient ('p is based on plan-form area, equation
(26a) cen be re-expressed as

1

(26a)

AR?

AN
%=(i) rirmT 260
since the aspect ratio of the wing is AR=(45)/(za). Perhaps

the most convenient formula for comparison follows from

-equations (25b) and (26a) if the drag of the wing is expressed

in terms of the drag of a Kérm#n ogive with the same length
and base area. The ratio is given by

D a 1
Dx (*+06*9% [1+ (=B 4R[4)%*

The wave drag of the elliptic wing with cylindrical after-
body, in the limit as aspect ratio approaches zero, is equal
to the drag of the Kdrm#én ogive and afterbody. For finite
values of aspect ratio, the wave drag of the flat wing is
smaller than that of the body of revolution, the initial devi-
ation of the ratio from unity being proportional to (8AR)%.

Tapered plan form with afterbody.—As a third example,
consider & plan form of arbitrary taper ratio with base area
along its trailing edge fixed. When the trailing edge is of
subsonic type a cylindrical afterbody is assumed added.

@7
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As shown in figure 6, root chord is equal to 2e¢ and span
equal to 2b. The tip chord is 2d so that taper ratio A, and
aspect ratio 4R may be introduced in the form

Y=d/a
R=2b/la(1-+2)]

So long as the leading edge of the wing is supersonic the
characteristic trace C} is as shown in figure 7 and is composed
of arcs of circles and straight lines, the radii of the inner and
outer circles being a/8 and d/8, respectively. The distance
between the centers of the two outer circles is 2b. Once the
leading edge of the plan form is subsonic, the central circle
of figure 7 blankets the other parts of the figure and (} is
the circle of radius a/B. -

A

Ficure 6.—Tapered plan form with given base area.
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Z

a’/é
a/B

|
— 2b ,
Figure 7.—Characteristic trace for wing with tapered plan form.

The area S is the sum of elementary geomefric areas and
is given by

S=%f,’:’ [’5’ ai+-LE90 07 cos ata (1-%2)]

where a, shown in figure 7, is given by

. 2(1—))
ACSI B R TN

» 2(1—N) S BAR(1+N)

1 2(1—2) Z BAR(1+N0)

S|

From equations (22) and 25b), the minimum drag of the
tapered wing relative to the drag of the Kérmdn ogive of
equal length and base areais

N

D Ll ’

Dr ot 10 [N IR —4 (1)) TA—2(1—\) are cos [5%1(1—%
when

2(1—N) SBARA+N) \ (28)
‘ D
D!
‘when
2(1—x) BB 1+ J

Special cases of interest are:
Rectangular wing (Ao=1)

D 1

De 1T @& [x )
Diamond wing (M=0)
D 1 )
= » 2=ZB8AR
D 1 2 2
x I+ [(B4R)* —4] %—-; arc cos (ﬁ_—ZR> - (30)

AR =2

=1,

Figure 8 shows a plot of D/Dx against AR for the elliptic,
rectangular, tapered, and diamond plan forms. Base area

and length of the wings are equal to these parameters for
the Kérmén ogive. For large values of BAR the relative
drag decreases as 1/84R. As the wing plan forms become
slender, drag of the elliptic and rectangular wings approaches
in the limit of vanishing 84 the drag of the ogive. The
tapered wing, on the other hand, has a value of drag equal
to that of the ogive for all values of taper ratio and aspect
Tatio satisfying the inequality 2(1—N\)) 2R (1+N). This
relation is satisfied so long as the edges of the wing are sub-
sonic. Changes in sweep angle of the leading and trailing
edges produce no further change in the minimum drag of
the configuration so long as the base area is held fixed. The
value Dy is the minimum drag for all such configurations
lying within the fore-and-aft Mach cones from the nose and
tail of the wing. Except in the case of the rectangular

Y
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Frqure 8.—Optimum drag for various plan forms, given base areas.

plan form, the curves of D/Dx have zero slope at their
peak values. ' ‘

Yawed elliptic plan form with afterbody.—For given base
area, the drag of an elliptic plan form at angle of yaw ¢ can
be calculated from equation (24). In order to justify this
statement it is sufficient to show that the characteristic
curve I’ lies in the plane x=f=m(y+b,). The trace of
T, in a ¢z plane is, in fact, another ellipse and the dimensional
relationships between the plan form and the trace are as
shown in figure 9. It is convenient in the derivation of
these results to proceed inversely and to determine the
plan form as an envelope of curves given by the intersections
in the ay plane of fore-and-aft facing cones with vertices
on I';. Since the streamwise position of the origin is of no
direct significance, the space curve I may be assumed
given by

yﬁ 22 N
r=my, m<B
The Mach cones with vertices at the point (2;, 71, 2;) on I'; are
(x—20)*=F(y—y1)*+(2—21)7 (32)

where

T=my, z,’=%(B’—y12)

The parametric equation of the envelope in the yz plane
is found from equation (32) with z=0 and the y, derivative

of the same expression, that is, by elimination of 3, from the

relations
B[(@—my)*— B (y—y)*1=6C(B*—y1’)
[B*m?— §*(B*— ) lyr= (ma— %) B
The envelope is, therefore,

(B'— )i’ —2mB’zy+ (m* B+ 8 CP)y* = C*[6*(B* — (%) —m’B]
(33)
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Equation (33) represents an ellipse so long as the initially
chosen m satisfies the inequality

m*< (B —C%)[B? (34)

The elliptical plan form is fixed by its major and minor
axes and angle of yaw. The relationship between the plan
form and trace curve is more conveniently carried out,
however, in terms of the three quantities 7, b, § where [ is
streamwise length of the plan form, 2b its width, and z=sy
is the line passing through the points on the plan form
where y=45.

Elementary calculations performed with tquation (33)
yield the following relations

2= (B*m*+p*CH¥% (352)
b=(B*—CH¥% (35b)
=l (350)

tan 2= —2mB* (35d)

(B*— () — (m*B*+6*CY)

b— 26—
! AN y
1 * I
|- |
.
|
I |
I
| l I
]
—_ | [
|
l
2c -I ¥

{ 28 |

Fioure 9.—Yawed elliptic wing and characteristic trace.
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In figure 9 the plan form is also circumscribed by a
parallelogram with sides inclined at the Mach angle. The
equations of these lines are

z=By=+ (B—m)B,

from which it follows that their outermost intersection points
are at y= B and the line connecting the intersection points
is z=my.

The above results thus show that the Mach lines circum-
scribing the plan form can be used to determine the span of
the trace of T, and the angle of inclination of the plane of
T,. The span of the plan form is, moreover, equal to the
distance between the foci of the elliptic trace.

From equations (24) and (25b) the drag of the wing and
afterbody relative to the drag of the K4drmdn ogive of equal
length and base area is given by

D 12 Bm2-L-g20n
Dy 4BOBE—mY) BOE—mD

z=—Pfy=x (8+m)B

(36)

The results can be summarized as follows
}

D _ [ 14p8-H[(HEE)—4pre % | ¥ 1
Dx \I—pe+(+Fe—apreln | [(TFe)— 4 aes

(37

4
A= ey =201 (38)
tan 2¢—125’5£, (39)

Figure 10 is a plot of D/Dx against angle of yaw for
M=2 and R=4/x, 4, 8. The smallest of these values
of aspect ratio corresponds to a circular plan form and ob-
viously must be independent of ; the drag ratio is D/Dg=
+/2/2 and this is in agreement with equation (27) for the
special case of the circular wing. Several limiting forms of

10
' M \
8 IR =
! \ 4/m
! ————— g
6 I ] ==
I
A / \
D / \-
4 /. 1
/ \
l'/.‘ Y
2 ,L NN
__——__/_/'/ ' \\\\:\\ 7
S S—
OO° 15° 30° 45° 60° 75° a0°
'4’ -

Fraure 10.—Optimum drag for yawed elliptic wings.
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equation (37) are of interest in showing the variation of drag.
For example, when §=0, the plan form is unyawed, MR=
4f/x and .

D 1 1
Dx (1+88% 1+ &4

This relation furnishes the values

as given in equation (27).
If 6¢=1 and £540 one has

of D/Dx in figure 10 at ¢y=90°.
ML=, Yy=arc tan ¢ and

D 1
Dx  (1—5 tan )%

This is the general drag relation for the yawed wing when
aspect ratio becomes infinite. It is to be noted that drag
remains finite except when the angle of yaw is equal to the
free-stream Mach angle. In figure 10 the drag curve for
infinite aspect ratio must therefore have a singularity at
Yy=45°. If §¢#— 1 and £—0 so that aspect ratio remains
finite, it follows that y—0 and D/Dx=
General results in connection with minimum drag with
fixed base area.—The connection between the Lagrange
multipliers of the variational problems (see eqgs. (12) through
(15)) and certain quantities in the combined flow field has
been mentioned. Another interesting interpretation for the
parameter A can be found. In the case when f=const. on
Ci, X can be evaluated explicitly in terms of the geometry in
the plane of I';; from equations (12b) and (22)
- : >\ A
A =-2 7S (40)

Equation (40) states that —A/q., is equal to the pressure co-
efficient predicted on the linearized theory for the unidimen-
sional duct flow bounded internally and externally by tho
characteristic traces, that is, by the curves C; and Cj, as in
figure 2. By the other interpretation, A\/q., is also the pressure
coefficient in the combined flow field., This result can also
be generalized to the case where =f=my-+b, by sweeping
back the entrance to the duct by the same amount as the
plane of T.

Another point that should be made in regard to the
optimum configurations for which f/=0 on I, follows from
equation (22). That is, the Kérmdn ogive has the groatest
value of minimum drag for given length, base area, and Mach
nurber. This follows directly from equation (22) by noting
that the area S is & minimum when the trace (; is the circle
connected with the Kdrmén ogive of the prescribed length
and bage area. The curves in figure 8 show this result clearly.

The final result of a general nature to be noted here is
found by comparing equations (12a) and (14a), the mini-
mizing conditions for given base area and for given lift, ro-
spectively. If differences of over-all sign (because of the
quadratic dependence of drag upon x) are disregarded, the
two problems W111 lead to the same x, hence the same drag, if

vif=0 in §
9g.0=lim (\f) on C, (1)
=0
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It is found that a supersonic-edged wing with a straight
supersonic trailing edge, parallel to z=Fky, leads o a function
f which satisfies equations (41). If the trailing edgeis -

- z—ky=a (k<B)

then the surface =; (see fig. 1) is an inclined plane:

2=[(y,2)=ky—(B'—F)"*z+e (220)
so that
fs=_(62—'k2)”
V=0
From the second of equations (41),
2qma'=’— (ﬂz'—kz)“)\

The drags of the two cases are equal, giving, by equations
(14b) and (12b),
(B —k)% L
T2 1.
Thus one has the result that if the minimum drag due to lift
of a supersonic-edged wing with a straight supersonic trailing
edge parallel to =4~y is known, then a nonlifting wing of the
same plan form and with base area given by

4=BE)% L
2 Qo

A=—

will have the same optimum drag.

WINGS AND BODIES WITH GIVEN YOLUME

The variational problem in terms of x for the case of
prescribed volume with zero base area (egs. (13)) contains
an arbitrary constant % whose magnitude is to be deter-
mined by application of the zero base-area condition to the
solution of the boundary-value problem. Thus set

Xkt [ 10a 4 @) |=awe)

The problem in terms of @ is then, by equations (13),
V=0 inS

oa_ _ppt ot
on~ 4p,U. on on s (42)

L . (f’+kf+% on C;

The closure condition can be expressed as

f (fx+fix) dy dz=0
S

which becomes, after an application of Green’s theorem,

- kS=— f (Q—
"’pm

Clearly now, if f/=0 on (}, also k=0. Again, as in the given
base-area case, proper positioning of the origin can simplify
the analysis.

5620607—80——70

ﬂ) ds  (43)
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Quasi-cylindrical body of given volume.—The body and
notation are shown in figure 11. The external wave drag is
to be minimized under the conditions that volumse is fixed
and base area is zero.

Figure 11.—Optimum body of revolution with given volume.

In this case, Z; is the surface of the conical frustum, whose
equation is

s=f(r)=B(h+E—r); h=1/28

Since f=0 on C, in this case, the remarks on £, just above,
apply, and the boundary-value problem is

('2 Ufa>— in §
f’)——

=0 on 01

(44q)

bn X+ on 02

Since C and C; are circles, and the problem is independent
of the peripheral variable §, the solution of equations (44a)
can be written in the form

uf? up? RN
xpg (ar’+b-|—cln—r )

(44b)

where a, b, ¢ are to be determined from the boundary condi-

tions. One easily finds that
. R |
a=—3; 6—4 (R+h)?; o= 5 R?

The drag is then determined as

R+b

D=te f 2Hx A dy de=rp., [ rx3dr
R

R-l—h

-2y {“”’“R) R+ 3R+
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From equation (13b), the parameter p can be replaced by
2D/V, giving finally

;Z 2V’{h(h+2R) [(R-4-h)*—3 R+ Riin R+h

1
N0

(45)
where o=8R/[l, and

Clo)=" {(1+40')[(1+2cr)’—12u’]+64¢7‘ln—1—;:0_gg} (46)

9%

The result of equation (45), as in the case of given base
area, covers the entire spectrum of fineness ratios and yields,
in its limiting forms, the results of two-dimensional airfoil
theory (biconvex section) and slender-body theory. The
latter case, which is the Sears-Haack slender body with drag
Ds_g (rvefs. 14 and 15), corresponds to 0—0 Equation (45)
then becomes

Ds_y_ 128V
9o A

The above problem was considered previously by Heaslet
and Fuller (ref. 16) without recourse to the present techniques
but, rather, by minimizing after expressing drag in terms of
the source distribution that could be assumed to generate
the external shape of the body. In this approach, it becomes
necessary to find first the source-distribution funetion, under
minimizing conditions, and to calculate drag and volume
subsequently. The details of the calculation are thus less
direct since the desired quantities are axpressed as integrals
involving the hyperbolic influence function of the supersonic
source. In reference 16, the function C(s) of equation (46)
appeared in the form (in a modified notation)

C0)=3 [ 1a+20) A=+ 20)HEr(1—1) E—
o(1—10) (K—E)ldn

where K and E are elliptic integrals of first and second kind,

respectively, of modulus

- n(1—n) i
’”—I:<n+2a) p—

The immediate advantage of equation (46) is, of course, the
natural one provided by any analytic representation with
its precise determination of magnitude and rate of change.
From a disparate point of view, the equivalence of the two
results gives not only a new fundamental identity in the
theory of elliptic functions,, but also indicates a method
whereby further identities may be generated. From the
standpoint of direct application, however, the results of
reference 16 remain unmodified. The calculations that were
used to plot the variation of C(¢) were found to check to at
least four significant figures with the present formula, and
thus provided & satisfying confirmation of the numerical
techniques used in the original evaluation.

Elliptic wings of given volume.—As noted previously, a
wing of elliptic plan form leads to a boundary curve C; that
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is also an ellipse. Figure 12 shows the wing, the boundary
curves C; and (;, and the region S. Let C; be given by

2 2
Bt i
e

.
F 28 |

Fiaure 12.—Elliptic wing and characteristie trace.

The curve (; is now merely a segment of the y axis. The
solution of the problem where minimum drag is sought, for
given volume and zero base area, is eased by the fact that
by manipulation of equation (6b), using the extremum
conditions of equations (13) (with %k=0), the expression
for the volume can be put in the form

=_% J; f (x+275UT, 1) dydz (47)

Thus, explicit determination of x from equé.tions (13a) is
avoided, and the complicated expression for f need not be

‘exhibited; only the fact that it vanishes on the outer bound-

ary curve () is required. It is found that

p PBB(C?
25U BECe B’ 0= 1) (48)

L # 2
X 2p°U¢.f

satisfies equationé (13a) (with k=0). Substitution of equa-
tion (48) in equation (47) yields

Ve B} 28
3. o
where S (=xBC) is the area enclosed by ¢;. Now, from
equation (13b), the drag can be evaluated as
D 4V?
7. (B’ 0‘) on)
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Finelly, in terms of the original wing parameters (see
fig. 12),

Bi=qas+p-5c2
(*=p"1c

02
p 4 P2
go (mac)c® (B*-c¥a?)?

(49b)

which agrees with the result of Jones in reference 6. (A
typographical error in the reference has been corrected in
equation (49b).)

It might be supposed that, once again, a simple extension
of the above results would lead to the minimum-drag result
for a yawed elliptic wing of given volume. This, unfortu-
nately, is not the case. The drag found by the present
method is much lower than the known value, being correct
only in the limiting case of zero yaw, as above. The reason
is, presumably, that strict closure along the trailing edge
has not been enforced, only the condition that base area
vanish. An unreal wing has therefore been evolved in the
yawed case, with patches of negative base area where upper
and lower surfaces have crossed. It does not seem feasible
to enforce pointwise closure of the trailing edge in conjunc-
tion with the present method for drag calculation. Thus,
caution is necessary when using this method for given volume
problems. Of course, this difficulty does not arise when
treating lifting surfaces, for in that case, a negative ordinate
for the upper surface is of no concern.

CASES OF GIVEN LIFT AND MOMENT

A family of wings with supersonic edges.—Consider the
family of wings whose plan forms are all portions of the
hyperbola asymptotic to Mach lines through the point

(—d,0,0). The equation of the leading edge is
fy*=2dx+2?
and the trailing edge is
z=l

where the quantities d and I are shown in figure 13. The
root chord of the resulting wing is I. If d—0, the wing be-
comes a triangle with sonic edges, and if d/I>>>1, the wing
has very large span compared with its chord.
The surface Z; (fig. 1) is composed of a pair of inclined
planes
z=f(y,2) =1—Blz| (50)2
and the boundary curve C; (fig. 13).is made up of two
parabolas
#=(2d+1) (I—2612]) (50b)
If minimum drag for fixed lift and center of pressure is
sought for the wings of this family, the variation leads to
the problem

AND BODIES IN SUPERSONIC FLOW
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Ficure 13.—Hyperbolic-edged wing and characteristic trace.

V+U.r2/)=0 S
2
2 [xtU., (a—r,,r)z-l—Umrzf:l:O onG b (1)
x=0 on

where z, is the coordinate of the center of pressure. A

simple, exact solution of equations (51) follows directly if
Tm=d+}$1

in which case

3 U.BL

X="Toq. TCIL DTS ]%[ [8%*+@d+D) @28lz|—D]  (52)

In thJs event, the drag is given by

D_38 (LY _dt3!
L (gm> A (53)

where L is the given lift. Since the wing area is

1 L d+l
5 l:(d+l) w/l(A?d—+D—d’ cosh —d—]

the drag parameter is, written in terms of {=d/l

ﬁgf,’:% (11_“1';35;% [+ V1+2—¢2 cosh=t (14+0)]  (54)

Figure 14 shows the variation of the drag with ¢. This
latter parameter is, in geometrical terms, 82pfl, whero p, is
the radius of curvature of the leading edge at the apex, and
! is root chord. As [ varies from 0 to o, the plan form
ranges from & sonic-edged triangle to a wing that has nearly
a2 parabolic leading edge.
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In the limit {—0, when a sonic-edged triangular wing re-
sults, the value of the drag parameter given by equatiqn
(54) is

Cp
8Cs

-—0.225 (55)

This value is in agreement with the result of reference 8 for
center of pressure at 60 percent of root chord. Also, the
approximate result for given lift alone from reference 10 is
quite close to that of equation (55), being 0.223. This
would indicate that the center of pressure is near the 60-
percent-chord position for given lift. In fact, from the
results of reference 8, it is found that the center of pressure
for given lift alone lies at 63 percent of the chord.

At the other extreme, {—, the wing plan form is very
nearly a parabolic segment. The center of area of such a
parabolic segment lies at 60 percent of the chord, which
indicates that the loading is uniform over the wing. This
is the correct result for minimum drag with given lift in
two-dimensional flow, and the wing is indeed becoming
nearly 2 two-dimensional case at {—w.

DETERMINATION OF SURFACE SHAPE OF OPTIMUM BODIES OF
REVOLUTION
Generally speaking, the information gained by solving a
minimum-drag problem according to the method used in
this report includes knowledge of the function y, which is
of course the perturbation potential ¢ evaluated in the
rear enveloping characteristic surface =; of figure 1. It
would be useful if this information could be used then to
determine the singularity distribution, and ultimately the
surface shape, that gives rise to the flow field having the
optimal properties in question. In general, however, no
such method at present exists,? although various approaches
involving some degree of approximation haye been indicated
(ref. 8). In one case, where the singularities lie on a single
line, a complete analytical solution is possible, and will be
considered next.
Duocted body of revolution with prescribed base area.—The
potential due to a line disiribution of sources is given by

1 *=pr B(a:l)dxl
27 J_pr [(&—2z?—E)%

@ (&7, )=

where B(z) is the source strength per unit length, and the
lower limit, z=— SR, indicates the starting point for the dis-

2 Since the completlon of the work of this report, the authors have seen a paper by E. W,
Graham, A Geometrical Problem Related to the Optimum Distribution of Lift on a Planar
Wing In Supersonic Flow,"” Rep. 8M-23020, Douglas Aireraft Co., Nov. 1957. In this paper,
a solution Is given to the problem of determining lift distrfbution on & wing when oblique
Une Integrals of the loading taken across the wing are known. Now the lines along which
such integrals are known all le in the supersonic “zone of silenco’” assoclated with a given
polnt, and Graham makes a continuation of the function representing the Integrated loading
as a function of the angle of the oblique line so that the integrated loading can be considered
known for all lines throngh a given point. The integral equation expressing the Integrated
loading in terms of local Ieading is then inverted. Presnmably, an analogous procedure will
hold for the thickness case. For bodles of revolution, however, all oblique lines cut the singu-
larity distribution in a point, no dependence on the angle of obliquity exists, and the inverse
rroblem of finding the singularity distribution can be solved without difficulty.

!
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Fiaure 14—Variation of optimum drag for hyperbolie-edged wings,

tribution; B(z)=0 for z<—8R. In this, R is the radius of
the control cylinder on which the boundary conditions are
satisfied ; the initial point of the body is z==0 when the sources
start at z=—gR~R.

In this coordinate system, the surface =; is the conical
frustum given by

z=f(r)=l+BE—pr=p2h+R—r);

The function x is found by inserting this value for 2 in the
above potential relation;

2ph=l

X( )__i fﬁ(ﬁﬂe—r) B(:n,)da:,
= P B E) =2 A+ R—2)—al"
(56n)
Now set
B(z,) =[82h+RB)—=,]% B(2,)
— (66b)
peh+R)—2pr=t; r—EEEDL
and equation (56a) becomes
()= 1 f B (z1)d=, 1 (B (x)dx,
27 -8R (t—'xl)]'i 271" (T—xg)y‘
where r=t+ B8R and ;y=2,+8R. Hurther,since %=-—-2ﬁ dilr-’
the last equation can be written
_Bd ["B(z)dx,
X =2 Jo i) (67)

Equation (57) is recognized as the dual relatlon to the Abel
integral equation, namely

™ X (25) dirp
BJo (r—ixp)*

.

B (r)=7 (58)

¢
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Thus, when x, is known, the evaluation of B (x), hence of
B(z), is immediate.

In order to determine x and hence x,, one has, from equa-
tions (12a)

A .
v (x50 f>=0 in R<r< R+A
a% (x+2___p >‘U f>=0 at r=R
x=0 at r=R-+h

Thus, the solution for x is'readily seen to be

X= —R—h)

% U (r—
and so

__M
X=3p.0.

"The solution for the source-distribution function can now be

found by using equation (58);

B =g V= VETPE

Then

B ()= ?J

o~ o

[(@+BR) (I+BR—a]*

which checks with the result of reference 12, since, by equa-
tions (12b) and (21), it is found that

pUo34

A= 7S

and so

B (x)— [(a:-l-ﬁR) (I+BR—2)]¥ (59)
The surface shape of the body is now readily found, and this
has been done in reference 16.

Ducted body of revolution of given volume.—For this
case, it is convenient to place the origin at the center of the
body, since x is already known from equation (44b). The
same solution, as given by equation (58) with appropriate
changes, can be used, and the resulting source-distribution
function is

B @)= t={ =22 ttom) (@ pR—15—

1—2z
-1
2ﬁ11'3z cos H—_ZER
where for this expression the source distribution starts at
z=—BR as in the last example. From equations (13b) and
(45), one finds that

2.0 20%C(o)

_the wing and intersect the wing trailing edge.
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where C (¢) is defined in equation (46).
is then

The source strength

B, —sisd - 20:)[(:v+ﬁR)(l+BR—-’;)]’;—
T

20t R? cos"l+2BR

(60)

Again, determination of the shape is made in reference 16.

DETERMINATION OF OBLIQUE INTEGRATED LOADINGS

A procedure has been outlined for relating integrals of the
perturbation potential ¢ taken across various lines in the
surface of a wing and in the rear characteristic surface =y
(see, e. g., eq. (19b)). The analysis will now be carried out
in detail for the family of hyperbolic-edged wings treated
above. For thespecial case of the sonic-edged member of the
family, some of the geometrical relationships are shown in
figure 3. The auxiliary plane =; (given by eq. (17)) is seen
to cut the wing plane Z, in the line CD, and to cut the lower
part of the =; surface in the line EF. Clearly, as the inclina-
tion of CD, or the chordwise position of 2y, is changed, the
line will eventually cease cutting the right leading edge of
Theseregimes
are distinguished by d1V1d1ng the range of i, into Region I
and Region II (as shown in fig. 15), whose bounds are
functions of the angle 8;

Xo

<

X4
Fo

]
X
Fraure 15.—Dividing points distinguishing regions I and II. -
Region I: Xo=—d(1—sin 6) <, < X;=1—/[*+2d1 cosﬁ}
(61)

Region I1: X, <2y <Xy=1++1*4-2d[ cos §

where d and ! are defined as in figure 13, and cos §=p tany,.
The regions will be considered in order.

Region I.—The integral relation that results from applica-
tion of Green’s theorem to the region bounded by Z;, Z; and
%, (see fig 3) and for which z>>0 has been given as equation
(19b). If Green’s theorem (eq. (18a)) is applied to the lower
portion, the following relation results:

_%!of%dmdy-l- Jg—fdz+ﬂg—fdz=o
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Using again the coordinates », s in the separate planes, one
finds

1 J f odrd J+[ f o(Z2Z)ds—

[Coezads [+ [To@zats=0 62

The notation ¢ (Z;2;), etc., means that ¢ is to be evaluated
along the intersection of the surfaces =; and =5.

In order to express the element ds in terms of, say, dy
along the various lines, one can set up the coordinate trans-
formation to express the N,»,¢ system as a rigid rotation of
the «,y,z system. It is thereby found that along OD, ds=dy
sin 6, and along EF, ds dy. The relations (19b) and (62)
then become

1 . D
= | | edzdyt-sing | o(EZdy=0 (z>>0) (634a)
oo .

_é f f el dy+2 f : (Z2Z5)dy—sin BJ;D¢(Eoza)dy=O (2<0)
) (63b)

where the z2>>0, 2<0 are necessary because ¢ is discontinuous
at the z=0 plane.

If the limits of integration for the surface integral over
% are inserted and the equations differentiated with respect
to 2, (recall that ¢=0 on the surface =), equations (63)
become

D D
fc s (208 cos 8y, y)dy=—p sin GL w:(x04B cos 8y, y)dy
) (64a)

D D
fc @: (o8 cos fy,y)dy=—p sin ﬂfc e:(xo B cos y,y)dy+

26 f b% lo(Z:2)dy]  (64b)

where once again the results apply respectively to the cases
where z approaches zero from above and from below.
Equation (64a) is seen to be a relation between integrals
of perturbation components taken along the same oblique
line across a supersonic-edged wing. If the integrated

loading
is introduced, equation (64a) becomes 3~
L(Io,0)= 4

q T.Bsinb). w(’°+5 cos fyy)dy  (66)

where w is the vertical perturbation component. Thus, the

integrated loading is proportional to the averaged wing.

slope, both taken along the same line across the wing; the

3 The authors are indebted to Professor P. A, Lagorstrom and Dr. M. E. Graham for point-
ing out an error in the definition of the line element ds which introduced an incoitect depend-
ence on & in the verslons of the present formulas (68), (68), and (70) given In the ariginal
NAOGA Technical Noto 4227 (see footnote 1).
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line in question lying somewhere in the ‘“‘zone of silence”
corresponding to the point (z,0,0). Once again, these
results are not confined to the case of optimum wings.

Nowreturn to equations (64). It isnecessary to determine
the argument of ¢ in the last integral on the right in equation
(64b), and this is done by solving for z and z in terms of y
from the equations of = and I;;

S x=1l+p82
po :c=rH—B cos fy—p sin 0z
One finds that
_ [lsin 642+ cos by —I4x,+p cos Oy
o(ZeZ)=¢ TFsing Y Blitsno

If the differentiation with respect to z, is now performed in
equation (64b), and the result subtracted from equation
(64a), one gets the relation

D .1 F
fc er(2o+B cos Oy, y)dy= B Sm o Femo) fg Bu+w)dy

—f X,y
~ B sm6(1+sm 6) (©7)

Making use of the definition of integrated loading given in
equation (65), one has finally

L(xo,8) 4
9.  U.Bsinf(1+sinf)

xzdy (68)

which relates the integmted loading for a point in region I
to an integral of the function x, across the rear enveloping
surface 2;. This form of the result is well adapted to the
case of optimum wings since, in general, surface values of
the slope are not known, whereas, in the present method of
optimizing, the function x is known.

Region II.—The plane =; now intersects the trailing edgo
of the wing, and the boundary of the region of integration
will include a portion of the rear enveloping surface =, for
both 2>>0 and z<0. Figure 16 shows a trace in an x=const.

|

Frqure 16.—Trace of interseotions of cutting plane with rear surface.
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plane of the lines of intersection of the cutting plane =; with
both upper and lower portions of Z;. The oblique line across
the wing intersecting the trailing edge is also shown, and
the figure serves to define the notation used in this section.

The formulas resulting from application of equation (18a)
to both upper and lower portions of the volume bounded by
the forward Mach surface, the rear enveloping surface, and
the plane =, are as follows:

% ff%dw dy+2f:¢(2223)d?+
Zy
LD¢(zoza)ds+ f:¢(2022)d8=0

—113 ffgo,dx dy+2LD¢(zzEa)d9_
2y

D FY .
f o (ZoZg)ds+- f o(ZoZ2)ds=0
4] D

(>0) (69a)

(2<0) (69b)

In these equations, the limit indicated by an asterisk is the
intersection of leading and trailing edges of the wing. Once
again the equations are differentisted with respect to x, and
the results combined. Thus one finds for a point z, in
region IT (see eqs. (61))

L(ry,8) 4 [—z,
- U,Bcost cos 8’ 0>+

L Dx,dy f :x,dy> ) -

4
U.Bsiné <1—sin0 14sing

Tor the case of interest here, x, is a constant, as is seen
from equation (52). After substituting the values for x and
X: in equations (68) and (70), and using the dimensionless
variables

X By . _d
E"_l’ =7 f_l

one gets the following results for the integrated loading:
Region I:

lL(Eﬂya) 3 NMF—NE (71&)
L 2,/13-27 sin 6(1+sin 6)
Region I1:
NMg—Np , Mp—"x
{L(%0,0) 3 (428 —np*, 3 1—sin 6 ' 14-sin g
L 4(14-28)% cos ' 0/1+2¢ sin 6
(71Db)

where
ne=(1-Fsin 0) ~{(142¢) cos 6+
V2(14-2¢) (1+sin 6)[&+ ¢ (1—sin 6)]}
n5=(14sin 6)~{(1+2¢) cos 6—
VEATZ0) (IFsim ) ot FA—sim O]
na=(1—sin 0)~*{(14-2¢) cos §—
V2(1+42¢) (1—sin 6) [fo+¢(1+sin 6)]}

1p=_1—*%d)/cos 8
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In figure 17 these integrated loadings are drawn for the
three members of the family corresponding to ¢=d/fl=0,
1.5, 5, with =1 and py=0° 15° 30°, 45° in each case.
The dimensionless quantity plotted is

P(¢o,f)=IL(z0)/L

30

251

(b)

Figure 17.—Integrated loadings for family of wings with hyperbolic
edges.
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It is to be observed that when u=0°, §==/2 and region Il
ceases to exist. In this case, the integrated loading is
precisely the chord loading of the wing. One then gets

Lod_3 72)

independent of the shape parameter {.

AMBES AERONAUTICAL LLABORATORY
NaTIONAL ADViSORY COMMITTEE FOR ABRONAUTICS
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